Question #0c521

1 Answer
Apr 8, 2017

Let

x^3= 64(cos(pi)+isin(pi))

=>x^3= 64(-1+ixx0)

=>x^3+64=0

=>x^3+4^3=0

=>(x+4)(x^2-4x+16)=0

So when x+4=0

=>x=-4=4(-1+ixx0)=4(cos(pi)+isin(pi))

when

(x^2-4x+16)=0

=>x=(4pmsqrt(4^2-4*1*16))/2

=>x=(4pmsqrt(-48))/2

=>x=(4pm4sqrt(-3))/2

=>x=(2pmi2sqrt(3))

=>x=4(1/2pmisqrt(3)/2)

So =>x=4(cos(pi/3)pmisin(pi/3))

So three cube roots are

4(cos(pi)+isin(pi)),4(cos(pi/3)pmisin(pi/3))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Applying de moivre's formula

we have

x^3= 64(cos(pi)+isin(pi))

x= 64^(1/3)(cos((pi+2pik)/3)+isin((pi+2pik)/3))

where k varies over the integer values from 0 to 2

For k=0

x= 64^(1/3)(cos((pi+2pixx0)/3)+isin((pi+2pixx0)/3))

=>x= 4(cos((pi)/3)+isin((pi)/3))

For k=1

=>x= 64^(1/3)(cos((pi+2pixx1)/3)+isin((pi+2pixx1)/3))

=>x= 4(cos((pi)+isin((pi))

For k=2

x= 64^(1/3)(cos((pi+2pixx2)/3)+isin((pi+2pixx2)/3))

=>x= 4(cos(2pi-pi/3)+isin(2pi-pi/3))

=>x= 4(cos(pi/3)-isin(pi/3))

Please note

A modest extension of the version of de Moivre's formula

https://en.wikipedia.org/wiki/De_Moivre%27s_formula