Question #0c21c

1 Answer
Apr 11, 2017

-128(1+isqrt3).128(1+i3).

Explanation:

Let z=1-isqrt3=r(costheta+isintheta)=rcistheta, r >0.z=1i3=r(cosθ+isinθ)=rcisθ,r>0.

:. rcostheta=1, rsintheta=-sqrt3.

Squaring and adding, r^2(cos^2theta+sin^2theta)=1+3.

rArr r=2.

:. costheta=1/r=1/2, and, sintheta=-sqrt3/2.

:. theta=-pi/3.

rArr z=rcistheta=2cis(-pi/3).

By De' Moivre's Theorem, then,

(1-isqrt3)^8=z^8={2cis(-pi/3)}^8=2^8cis{8(-pi/3)}.

=2^8{cos(-8pi/3)+isin(-8pi/3)},

=2^8{cos(8pi/3)-isin(8pi/3)},

=2^8{cos(3pi-pi/3)-isin(3pi-pi/3)},

=2^8{-cos(pi/3)-isin(pi/3)},

=-2^8(1/2+isqrt3/2),

=-2^7(1+isqrt3).

Hence, the Reqd. Value=-128(1+isqrt3).

Enjoy Maths.!