How do you divide (3+4i)/(1+4i)3+4i1+4i in trigonometric form?

1 Answer
Mar 1, 2018

(3+4i)/(1+4i)=5/sqrt17(costheta+isintheta)3+4i1+4i=517(cosθ+isinθ), where theta=tan^(-1)(-8/19)θ=tan1(819)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their division leads us to

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ} or

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ×cosβisinβcosβisinβ}

(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta))(r1r2)(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)(cos2β+sin2β) or

(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta))(r1r2)(cos(αβ)+isin(αβ)) or

z_1/z_2z1z2 is given by (r_1/r_2, (alpha-beta))(r1r2,(αβ))

So for division complex number z_1z1 by z_2z2 , take new angle as (alpha-beta)(αβ) and modulus the ratio r_1/r_2r1r2 of the modulus of two numbers.

Here 3+4i3+4i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt(3^2+4^2)=sqrt25=5r1=32+42=25=5 and alpha=tan^(-1)(4/3)α=tan1(43)

and 1+4i1+4i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt(1^2+4^2)=sqrt17r2=12+42=17 and beta=tan^(-1)4β=tan14

and z_1/z_2=5/(sqrt17)(costheta+isintheta)z1z2=517(cosθ+isinθ), where theta=alpha-betaθ=αβ

Hence, tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=(4/3-4)/(1+4/3xx4)=(-8/3)/(19/3)=-8/19tanθ=tan(αβ)=tanαtanβ1+tanαtanβ=4341+43×4=83193=819.

Hence, (3+4i)/(1+4i)=5/sqrt17(costheta+isintheta)3+4i1+4i=517(cosθ+isinθ), where theta=tan^(-1)(-8/19)θ=tan1(819)