A capacitor is formed by two square metal plates of edge a, separated by a distance d, Dielectrics of dielectric constants K_1K1 and K_2K2 are filled in the gap as shown in figure. Find the capacitance.?

Concept of Physics 2

Answer: C = (ε_0K_1K_2a^2ln[K_1/K_2])/((K_1 - K_2)d)

1 Answer
Mar 14, 2018

my comp

Consider an infinitesimal strip of of capacitor of thickness dx at a distance x as shown. Keeping in view the position of terminlas we see that the infinitesimal capacitors so formed are connected in series.
Plate separation for lower part is xtanalpha whereas for the upper part it is (d-xtanalpha).
We know that equivalent capacitance of capacitors connected in series is given by the expression

1/(dC_(eq))=1/(dC_(K_1))+1/(dC_(K_2))

Inserting value for Parallel-plate capacitor of plate area A and plate separation t as C=epsilon_0A/t, we get

1/(dC_(eq))=(d-xtanalpha)/(K_1epsilon_0(adx))+(xtanalpha)/(K_2epsilon_0(adx))
=>1/(dC_(eq))=1/(epsilon_0adx)[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]
=>dC_(eq)=(epsilon_0adx)/[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]
=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2(d-xtanalpha)+K_1(xtanalpha)]
=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2d+(K_1-K_2)(tanalpha)x]

Integrating both sides with respect to respective variables from C=0toC_(eq) and x=0toa we get

C_(eq)=(K_1K_2epsilon_0a)int_0^a(dx)/[K_2d+(K_1-K_2)(tanalpha)x]

Using the following integral we get

int(dx)/(b*x+c)=ln(abs(b*x+c))/b

C_(eq)=(K_1K_2epsilon_0a)/((K_1-K_2)(tanalpha))[ln(|K_2d+(K_1-K_2)(tanalpha)x|)]_0^a

=>C_(eq)=(K_1K_2epsilon_0a)/((K_1-K_2)(tanalpha))[ln(|K_2d+(K_1-K_2)(tanalpha)a|)-(ln(|K_2d|)]

Inserting tanalpha=d/a, we get
C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)[ln(|K_2d+(K_1-K_2)d|)-ln(|K_2d|)]

Simplifying

C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)[ln((K_1d)-(ln(K_2d)]
=>C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)ln(K_1/K_2)