A capacitor is formed by two square metal plates of edge a, separated by a distance d, Dielectrics of dielectric constants K_1K1 and K_2K2 are filled in the gap as shown in figure. Find the capacitance.?
Answer: C = (ε_0K_1K_2a^2ln[K_1/K_2])/((K_1 - K_2)d)
Answer:
1 Answer
Consider an infinitesimal strip of of capacitor of thickness
Plate separation for lower part is
We know that equivalent capacitance of capacitors connected in series is given by the expression
1/(dC_(eq))=1/(dC_(K_1))+1/(dC_(K_2))
Inserting value for Parallel-plate capacitor of plate area
1/(dC_(eq))=(d-xtanalpha)/(K_1epsilon_0(adx))+(xtanalpha)/(K_2epsilon_0(adx))
=>1/(dC_(eq))=1/(epsilon_0adx)[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]
=>dC_(eq)=(epsilon_0adx)/[(d-xtanalpha)/(K_1)+(xtanalpha)/(K_2)]
=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2(d-xtanalpha)+K_1(xtanalpha)]
=>dC_(eq)=(K_1K_2epsilon_0adx)/[K_2d+(K_1-K_2)(tanalpha)x]
Integrating both sides with respect to respective variables from
C_(eq)=(K_1K_2epsilon_0a)int_0^a(dx)/[K_2d+(K_1-K_2)(tanalpha)x]
Using the following integral we get
int(dx)/(b*x+c)=ln(abs(b*x+c))/b
Inserting
Simplifying
C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)[ln((K_1d)-(ln(K_2d)]
=>C_(eq)=(K_1K_2epsilon_0a^2)/((K_1-K_2)d)ln(K_1/K_2)