A cone has a height of #11 cm# and its base has a radius of #3 cm#. If the cone is horizontally cut into two segments #8 cm# from the base, what would the surface area of the bottom segment be?

1 Answer
Apr 21, 2017

#:.color(purple)(=127.74cm^2#

Explanation:

enter image source here

:.Pythagoras: #c^2=11^2+3^2#

#:.c=L=sqrt(11^2+3^2)#

#:. c=Lcolor(purple)(=11.402cm#

#:.11/3=tan theta=3.666666667=74^@44’41.5”#

:.#color(purple)(S.A.##= pi*r^2+pi*r*L#

:.S.A.#=3.141592654*3^2+pi*3*11.402#

:.S.A.#=28.274+107.461#

:.Total S.A.#color(purple)(=135.735cm^2#

#:.Cot 74^@44’41.5”*3=0.818cm=#radius of top part

:.Pythagoras: #c^2=3^2+0.818^2#

#:.c=L=sqrt(3^2+0.818^2)#

#:. c=Lcolor(purple)(=3.110cm# top part

:.S.A. top part#=pi*r^2+pi*r*L#

S.A. top part#:.3.141592654*0.818^2+pi*0.818*3.110#

S.A. top part#:.=2.102+7.992#

S.A. top part#:.color(purple)(=10.094cm^2#

:.S.A. Botom part#color(purple)(=135.735-10.094=125.641cm^2#

The total surface area of the bottom part got to include
the surface area of the circle of the top part.
:.S.A. Botom part:.=2.102+125.641=127.743 cm^2#

#:.color(purple)(=127.74cm^2# to the nearest 2 decimal places #