A cone has a height of #12 cm# and its base has a radius of #8 cm#. If the cone is horizontally cut into two segments #8 cm# from the base, what would the surface area of the bottom segment be?

2 Answers
Jun 29, 2018

#A = (640/9 + 256/9 sqrt(13)) pi ~~ 173.7 pi " "cm^2 ~~549.6 " "cm^2#

Explanation:

Given: cone of #h= 12 cm, b = 8 cm#. Cut #8cm# from the base. Find the surface area of the bottom segment.

The new shape is called a conical frustum . It has the surface area formula :

#A = A_"lateral" + A_"bases"#

#A_"lateral" = pi (r_1 + r_2) sqrt((r_1 - r_2)^2 + h_f^2)#

#A_"bases" = pi((r_1)^2 + (r_2)^2)#, where

#r_1 = "base radius = 8 cm", " "r_2 = "top radius" = ?,#

#h_f = "the height of the frustum" = 8 cm#

#h_"top cone"/h_"bottom come" = (12-8)/12 = 4/12#

#color(blue) "Find the radius of the top"# using proportions of the two cones:

#h_"top cone"/h_"bottom come" = r_2/r_1; " "4/12 = r_2/8#

Use the cross-product: #12 r_2 = 4*8 = 32#

#r_2 = 32/12 = 8/3 cm#

#A_"lateral" = pi(8 + 8/3) sqrt((8-8/3)^2 + 8^2)= 32/3 pi sqrt((16/3)^2 + 64)#

#A_"lateral" = 32/3 pi sqrt(256/9 + 576/9) = 32/3 pi sqrt(832)/3#

#A_"lateral" = 32/9 pi sqrt(16) sqrt(4)sqrt(13) = 32/9 pi *8 sqrt(13)#

#A_"lateral" = 256/9 sqrt(13) pi " "cm^2#

#A_"bases" = pi(8^2 + (8/3)^2) = 640/9 pi " "cm^2#

#A = (640/9 + 256/9 sqrt(13)) pi ~~ 173.7 pi " "cm^2 ~~549.6 " "cm^2#

enter image source here

Jun 30, 2018

#~~545.60"cm"^2"to the nearest 2 decimal places"#

Explanation:

#tan theta=12/8=1.5=56^@18'36''#

#"top radius"=cot 56^@18'36''=0.666666666 xx4=2.666666666cm #

#Lateral area= F=pi(r_1+r_2)sqrt((r_1-r_2)^2+h^2)#

#F=pi(8+2.666666666)sqrt((8-2.666666666)^2+8^2)#

#F=pi(10.667)sqrt((5.333^2+8^2)#

#F=33.511sqrt28.441+64#

#F=33.511sqrt92.441#

#F=33.511xx9.615#

#F=322.196"cm"^2#

#S=F+ pi (r_1^2+r_2^2)#

#S=322.196+pi(8^2+2.666666666^2)#

#S=322.196+pi(64+7.111)#

#S=322.196+pi(71.113)#

#S=322.196+223.402#

#S=545.598"cm"^2#

#S="surface area of bottom segment"#

#=545.60"cm"^2"to the nearest 2 decimal places"#