A cone has a height of #9 cm# and its base has a radius of #5 cm#. If the cone is horizontally cut into two segments #7 cm# from the base, what would the surface area of the bottom segment be?

1 Answer
Dec 26, 2017

T S A = 236.1549

Explanation:

enter image source here
#OA = h = 9 cm, OB r = 5 cm, , AF = h_1 = 9-7 = 2 cm#

#FD = r_2 =( h_1 /h)*r = (2/ 9) * 5 = 1.1111 cm#

#AC = l = sqrt(h^2 + r^2) = sqrt(9^2 + 5^2) = 10.2956 cm #

#AE = l_1 = sqrt(h_1^2 + r_2^2) = sqrt(2^2 + 1.1111^2) = 2.2879 cm#

#pir^2 = pi*5^2 = 78.5398 cm^2#

#pir_2^2 = pi*1.1111^2 = 3.8784 cm^2#

#pirl= pi* 5 * 10.2956 = 161.7229 cm^2

#pir_2l_1 = pi* 1.1111 * 2.2879 = 7.9862 cm^2

Total surface area = #(pir^2 + pir_2^2 + pi.r.l - pi.r_2.l_1)#

T S A = 78.5398 + 3.8784 + 161.7229 - 7.9862 = 236.1549 #cm^2#