Find the absolute extrema of the given function #f(x)= sinx+cosx# on interval #[0,2pi]#? Calculus Graphing with the First Derivative Identifying Turning Points (Local Extrema) for a Function 1 Answer Sasha P. Oct 16, 2015 #f_max=sqrt2# #f_min=-sqrt2# Explanation: #f'(x)=cosx-sinx# #f'(x)=0 <=> cosx-sinx=0# #cosx/cosx-sinx/cosx=0 ^^ cosx !=0# #tanx=1 ^^ cosx !=0# #x=pi/4+kpi ^^ x != pi/2+mpi# #x=pi/4+kpi# On #[0,2pi]# : #x=pi/4 vv x=(5pi)/4 # #f_max=f(pi/4) = sin(pi/4)+cos(pi/4) = sqrt2/2+sqrt2/2=sqrt2# #f_min=f((5pi)/4) = sin((5pi)/4)+cos((5pi)/4) = -sqrt2/2-sqrt2/2=-sqrt2# #f_max=sqrt2# #f_min=-sqrt2# Answer link Related questions How do you find the x coordinates of the turning points of the function? How do you find the turning points of a cubic function? How many turning points can a cubic function have? How do you find the coordinates of the local extrema of the function? How do you find the local extrema of a function? How many local extrema can a cubic function have? How do I find the maximum and minimum values of the function #f(x) = x - 2 sin (x)# on the... If #f(x)=(x^2+36)/(2x), 1 <=x<=12#, at what point is f(x) at a minimum? How do you find the maximum of #f(x) = 2sin(x^2)#? How do you find a local minimum of a graph using the first derivative? See all questions in Identifying Turning Points (Local Extrema) for a Function Impact of this question 47249 views around the world You can reuse this answer Creative Commons License