How can you memorize exponent rules?

1 Answer
Mar 30, 2016

See explanation...

Explanation:

Start with positive integer exponents:

a^n = overbrace(a xx a xx ... xx a)^"n times"

Then you can see:

a^m xx a^n = overbrace(a xx a xx ... xx a)^"m times" xx overbrace(a xx a xx ... xx a)^"n times"

=overbrace(a xx a xx ... xx a)^"m + n times" = a^(m+n)

This is useful when you multiply two numbers that are expressed in scientific notation. For example:

(1.2 xx 10^3) xx (2.4 xx 10^6)

=(1.2 xx 2.4) xx (10^3 xx 10^6)

=2.88 xx 10^(3+6)

=2.88 xx 10^9

color(white)()
For negative exponents, first note that if a != 0:

a^(-n) = 1/underbrace(a xx a xx ... xx a)_"n times"

and we find:

a^n xx a^(-n) = overbrace(a xx a xx ... xx a)^"n times" xx 1/underbrace(a xx a xx ... xx a)_"n times"

=overbrace(a xx a xx ... xx a)^"n times"/underbrace(a xx a xx ... xx a)_"n times" = 1

We find that the rule: a^m xx a^n = a^(m+n) works for any integer values of m and n, positive, negative or 0.

color(white)()
The next level of complexity is:

(a^m)^n = overbrace(a^m xx a^m xx .. xx a^m)^"n times" = a^(mn)

For example:

(2^2)^3 = 4^3 = 64

color(white)()
Finally note that a^(m^n) is evaluated from right to left.

That is:

a^(m^n) = a^((m^n))

For example:

2^(2^3) = 2^8 = 256