How can you memorize exponent rules?
1 Answer
See explanation...
Explanation:
Start with positive integer exponents:
a^n = overbrace(a xx a xx ... xx a)^"n times"
Then you can see:
a^m xx a^n = overbrace(a xx a xx ... xx a)^"m times" xx overbrace(a xx a xx ... xx a)^"n times"
=overbrace(a xx a xx ... xx a)^"m + n times" = a^(m+n)
This is useful when you multiply two numbers that are expressed in scientific notation. For example:
(1.2 xx 10^3) xx (2.4 xx 10^6)
=(1.2 xx 2.4) xx (10^3 xx 10^6)
=2.88 xx 10^(3+6)
=2.88 xx 10^9
For negative exponents, first note that if
a^(-n) = 1/underbrace(a xx a xx ... xx a)_"n times"
and we find:
a^n xx a^(-n) = overbrace(a xx a xx ... xx a)^"n times" xx 1/underbrace(a xx a xx ... xx a)_"n times"
=overbrace(a xx a xx ... xx a)^"n times"/underbrace(a xx a xx ... xx a)_"n times" = 1
We find that the rule:
The next level of complexity is:
(a^m)^n = overbrace(a^m xx a^m xx .. xx a^m)^"n times" = a^(mn)
For example:
(2^2)^3 = 4^3 = 64
Finally note that
That is:
a^(m^n) = a^((m^n))
For example:
2^(2^3) = 2^8 = 256