How can you use trigonometric functions to simplify 15 e^( ( 3 pi)/8 i ) 15e3π8i into a non-exponential complex number?

1 Answer
Jan 15, 2016

15e^((3pi)/8i) = 15/2(sqrt(2-sqrt(2)) + sqrt(2+sqrt(2))i)15e3π8i=152(22+2+2i)

Explanation:

Using the identity e^(itheta) = cos(theta) + isin(theta)eiθ=cos(θ)+isin(θ) we have:

15e^((3pi)/8i) = 15(cos((3pi)/8)+isin((3pi)/8))15e3π8i=15(cos(3π8)+isin(3π8))

If we do not want trig functions either, we can simplify further using the half angle formulas.

cos((3pi)/8) = cos(1/2((3pi)/4)) = sqrt((1+cos((3pi)/4))/2) = sqrt(2-sqrt(2))/2cos(3π8)=cos(12(3π4))= 1+cos(3π4)2=222

sin((3pi)/8) = sin(1/2((3pi)/4)) = sqrt((1-cos((3pi)/4))/2) = sqrt(2+sqrt(2))/2sin(3π8)=sin(12(3π4))= 1cos(3π4)2=2+22

Thus

15e^((3pi)/8i) = 15(sqrt(2-sqrt(2))/2 + sqrt(2+sqrt(2))/2i)15e3π8i=15(222+2+22i)

= 15/2(sqrt(2-sqrt(2)) + sqrt(2+sqrt(2))i)=152(22+2+2i)