How can you use trigonometric functions to simplify 15 e^( ( pi)/8 i ) 15eπ8i into a non-exponential complex number?

1 Answer
Aug 5, 2018

color(maroon)(=> 13.8585 + 5.7403 i13.8585+5.7403i

Explanation:

Trigonometric form of e^ (ix)eix, using Euler's Equation, is given by

e^ (ix) = cos x + i sin xeix=cosx+isinx

![www.songho.ca)

z = |z| e^(i x) = |z| * (cos theta + i sin theta)z=|z|eix=|z|(cosθ+isinθ)

15 e^((pi)/8i) = 15 * ( cos(pi/8) + i sin(pi/8))15eπ8i=15(cos(π8)+isin(π8))

=> 15 (0.9239 + i 0.3827)15(0.9239+i0.3827)

color(maroon)(=> 13.8585 + 5.7403 i13.8585+5.7403i