How can you use trigonometric functions to simplify 16eπ6i into a non-exponential complex number?

1 Answer
Dec 31, 2015

Euler formula eiθ=cos(θ)+isin(θ) using this we can represent the given complex number as .

16eπ6i=83+8i

Explanation:

16eπ6i
Comparing to the Euler's formula eiθ
We can see θ=π6

Therefore,

16eπ6i=16(cos(π6)+isin(π6))

16eπ6i=16(32+i(12))

16eπ6i=162(3+i)

16eπ6i=8(3+i)

16eπ6i=83+8i Answer