How can you use trigonometric functions to simplify 19 e^( ( 3 pi)/4 i ) into a non-exponential complex number?

1 Answer
Oct 29, 2017

-(19root2 2) /2 + i(19root2 2)/2

Explanation:

We need to consider how re^(itheta) = rcostheta + irsintheta

In this circumstance theta = (3pi)/4

And r =19

Hence 19e^((3ipi)/4) = 19( cos((3pi)/4) + isin((3pi)/4))

Hence via evaluating cos((3pi)/4) and sin((3pi)/4) we get;

19(-(root2 2) /2 + i(root2 2)/2)

Hence yeilding our answer or -(19root2 2) /2 + i(19root2 2)/2