How can you use trigonometric functions to simplify 2 e^( ( 3 pi)/8 i ) into a non-exponential complex number?

1 Answer
Mar 10, 2018

2e^((3pi)/8i)=sqrt(2-sqrt2)+isqrt(2+sqrt2)

Explanation:

Using trigonometric functions re^(itheta) can be written as

r(costheta+isintheta) or rcostheta+irsintheta

Hence 2e^((3pi)/8i)=2(cos((3pi)/8)+isin((3pi)/8))

= 2(sqrt(2-sqrt2)/2+(sqrt(2+sqrt2)/2)i)

= sqrt(2-sqrt2)+isqrt(2+sqrt2)

See details here for cos67.5^@ and sin67.5^@