How can you use trigonometric functions to simplify 2 e^( ( 4 pi)/3 i ) into a non-exponential complex number?
1 Answer
Explanation:
Using
color(blue)" Euler's relationship "
re^(itheta) = r( costheta + isintheta )
rArr 2e^((4pi)/3 i) = 2 [(cos((4pi)/3) + isin((4pi)/3)]
"----------------------------------------------------------" now :
cos((4pi)/3) = -cos(pi/3) and
sin((4pi)/3) = -sin(pi/3) Using
color(red)" exact value triangle "
From the triangle we can obtain
-cos(pi/3) = -1/2" and -sin(pi/3) = -sqrt3/2
rArr 2e^((4pi)/3 i )= 2( -1/2 -i sqrt3/2) = -1 - isqrt3