How can you use trigonometric functions to simplify 2 e^( ( 4 pi)/3 i ) into a non-exponential complex number?

1 Answer
Apr 15, 2016

-1-isqrt3

Explanation:

Using color(blue)" Euler's relationship "

re^(itheta) = r( costheta + isintheta )

rArr 2e^((4pi)/3 i) = 2 [(cos((4pi)/3) + isin((4pi)/3)]
"----------------------------------------------------------"

now : cos((4pi)/3) = -cos(pi/3)

and sin((4pi)/3) = -sin(pi/3)

Using color(red)" exact value triangle "

enter image source here

From the triangle we can obtain
-cos(pi/3) = -1/2" and -sin(pi/3) = -sqrt3/2
rArr 2e^((4pi)/3 i )= 2( -1/2 -i sqrt3/2) = -1 - isqrt3