How can you use trigonometric functions to simplify 2 e^( ( pi)/3 i ) 2eπ3i into a non-exponential complex number?

1 Answer
Mar 25, 2018

The answer is =1+isqrt3=1+i3

Explanation:

Apply Euler's Identity

e^(i theta)=costheta+isinthetaeiθ=cosθ+isinθ

Here,

z=2e^(ipi/3)z=2eiπ3

=2(cos(pi/3)+isin(pi/3))=2(cos(π3)+isin(π3))

cos(pi/3)=1/2cos(π3)=12

sin(pi/3)=sqrt3/2sin(π3)=32

Therefore,

z=2(1/2+isqrt3/2)z=2(12+i32)

=1+isqrt3=1+i3