How can you use trigonometric functions to simplify 3 e^( ( 3 pi)/8 i ) 3e3π8i into a non-exponential complex number?

1 Answer
Feb 19, 2016

we can use Euler's formula to solve the problem

Explanation:

Euler's formula e^(ix)=cosx -isinx eix=cosxisinx
let p=3e^(3pi/8i)p=3e3π8i
p^2=9e^(3pi/4i)p2=9e3π4i
p^2=9e^(3pi/4i)=9(cos(3pi/4)+isin(3pi/4)p2=9e3π4i=9(cos(3π4)+isin(3π4)
p=3sqrt(cos(3pi/4)+isin(3pi/4)p=3cos(3π4)+isin(3π4)
p=3sqrt(-1/sqrt(2)+i 1/sqrt(2))p=312+i12