How can you use trigonometric functions to simplify 4 e^( ( 5 pi)/4 i ) 4e5π4i into a non-exponential complex number?

1 Answer
Dec 21, 2015

Use the Moivre formula.

Explanation:

The Moivre formula tells us that e^(itheta) = cos(theta) + isin(theta)eiθ=cos(θ)+isin(θ).

Apply this here : 4e^(i(5pi)/4) = 4(cos((5pi)/4) + isin((5pi)/4))4ei5π4=4(cos(5π4)+isin(5π4))

On the trigonometric circle, (5pi)/4 = (-3pi)/45π4=3π4. Knowing that cos((-3pi)/4) = -sqrt2/2cos(3π4)=22 and sin((-3pi)/4) = -sqrt2/2sin(3π4)=22, we can say that 4e^(i(5pi)/4) = 4(-sqrt2/2 -i(sqrt2)/2) = -2sqrt2 -2isqrt24ei5π4=4(22i22)=222i2.