How can you use trigonometric functions to simplify 4 e^( ( 5 pi)/4 i ) 4e5π4i into a non-exponential complex number?

1 Answer
Jun 14, 2016

The value of this complex number is -2sqrt(2)-2sqrt(2)i2222i

Explanation:

To express a complex number without exponents you use the following formula:

|z|*e^(varphii)=|z|(cosvarphi+isinvarphi)|z|eφi=|z|(cosφ+isinφ)

In the example above you have:

|z|=4|z|=4

varphi=(5pi)/4φ=5π4

So you have:

4e^((5pi)/4*i)=4*(cos((5pi)/4)+i*sin((5pi)/4))=4e5π4i=4(cos(5π4)+isin(5π4))=

4*(cos(pi+pi/4)+i*sin(pi+pi/4))=4(cos(π+π4)+isin(π+π4))=
4*(-cos(pi/4)-isin(pi/4))=4(cos(π4)isin(π4))=
4*(-sqrt(2)/2-i*sqrt(2)/2)=-2sqrt(2)-2sqrt(2)*i4(22i22)=2222i