How can you use trigonometric functions to simplify 5 e^( ( 13 pi)/12 i ) into a non-exponential complex number?

1 Answer
Aug 11, 2017

The answer is =-5/4(sqrt6+sqrt2)+i5/4(sqrt2-sqrt6)

Explanation:

We apply Euler's relation

e^(itheta)=costheta+isintheta

5e^(13/12ipi)=5(cos(13/12pi)+isin(13/12pi))

cos(13/12pi)=cos(1/3pi+3/4pi)

=cos(1/3pi)cos(3/4pi)-sin(1/3pi)sin(3/4pi)

=-1/2*sqrt2/2-sqrt3/2*sqrt2/2

=-(sqrt6+sqrt2)/4

sin(13/12pi)=sin(1/3pi+3/4pi)

=sin(1/3pi)cos(3/4pi)+cos(1/3pi)sin(3/4pi)

=-sqrt3/2*sqrt2/2+1/2*sqrt2/2

=(sqrt2-sqrt6)/4

Therefore,

5e^(13/12ipi)=-5/4(sqrt6+sqrt2)+i5/4(sqrt2-sqrt6)