How can you use trigonometric functions to simplify 5 e^( ( 3 pi)/2 i ) 5e3π2i into a non-exponential complex number?

1 Answer
Dec 29, 2015

Apply Euler's formula to convert the function into a trigonometric form, and then evaluate to find

5e^((3pi)/2i) = -5i5e3π2i=5i

Explanation:

Using Euler's formula: e^(itheta) = cos(theta)+isin(theta)eiθ=cos(θ)+isin(θ)

5e^(i(3pi)/2) = 5(cos((3pi)/2) + isin((3pi)/2))5ei3π2=5(cos(3π2)+isin(3π2))

= 5(0 + i(-1))=5(0+i(1))

= -5i=5i