How can you use trigonometric functions to simplify 6 e^( ( 23 pi)/12 i ) into a non-exponential complex number?

1 Answer
Nov 15, 2016

6e^(i(23pi)/12)=(3(sqrt6+sqrt2))/2-i(3(sqrt6-sqrt2))/2

Explanation:

A complex number a+ib in polar form can be written as rcostheta+irsintheta

and using series expansion, it can also be written as re^(itheta)

Hence 6e^(i(23pi)/12)=6cos((23pi)/12)+i6sin((23pi)/12)

= 6cos(2pi-pi/12)+i6sin(2pi-pi/12)

= 6cos(pi/12)-i6sin(pi/12)

= 6xx(sqrt6+sqrt2)/4-6i(sqrt6-sqrt2)/4

= (3(sqrt6+sqrt2))/2-i(3(sqrt6-sqrt2))/2