How can you use trigonometric functions to simplify 6eπ8i into a non-exponential complex number?

1 Answer
Mar 25, 2016

6eiπ8=6(cos(π8)+isin(π8))

=32+2+i(322)

Explanation:

Euler showed that for a complex number z=reiθ,

reiθ=r(cos(θ)+isin(θ))

In this case

  • r=6
  • θ=π8

Therefore,

6eiπ8=6(cos(π8)+isin(π8))

You can use half angle formulas to find sin(π8) and cos(π8).

6(cos(π8)+isin(π8))=6(2+22+i(222))

=32+2+i(322)