How can you use trigonometric functions to simplify 7e13π12i into a non-exponential complex number?

1 Answer
Jul 25, 2017

The answer is =74((6+2))+i74((26))

Explanation:

We apply Euler's relation

eiθ=cosθ+isinθ

Therefore,

7ei1312π=7(cos(1312π)+isin(1312π))

cos(1312π)=cos(π+112π)=cos(112π)

=cos(π3π4)=cos(π3)cos(π4)sin(π3)sin(π4)

=12223222

=6+24

sin(1312π)=sin(π+112π)=sin(112π)

=sin(π3π4)=sin(π3)cos(π4)+cos(π3)sin(π4)

=3222+1222

=264

Therefore,

7ei1312π=7(6+2)4+i7(26)4