How can you use trigonometric functions to simplify 8 e^( ( 19 pi)/12 i ) 8e19π12i into a non-exponential complex number?

1 Answer
Dec 4, 2017

The answer is =2(sqrt6-sqrt2)-2i(sqrt6+sqrt2)=2(62)2i(6+2)

Explanation:

Apply Euler's identity

e^(itheta)=costheta+ isin thetaeiθ=cosθ+isinθ

19/12pi=5/4pi+1/3pi1912π=54π+13π

cos(19/12pi)=cos(5/4pi+1/3pi)cos(1912π)=cos(54π+13π)

=cos(5/4pi)cos(1/3pi)-sin(5/4pi)sin(1/3pi)=cos(54π)cos(13π)sin(54π)sin(13π)

=-1/2*sqrt2/2+sqrt3/2*sqrt2/2=1222+3222

=(sqrt6-sqrt2)/4=624

sin(19/12pi)=sin(5/4pi+1/3pi)sin(1912π)=sin(54π+13π)

=sin(5/4pi)cos(1/3pi)+sin(1/3pi)cos(5/4pi)=sin(54π)cos(13π)+sin(13π)cos(54π)

=-sqrt2/2*1/2-sqrt3/2*sqrt2/2=22123222

=-(sqrt2+sqrt6)/4=2+64

Therefore,

8e^(19/12pi)=8cos(19/12pi)+i8sin(19/12pi)8e1912π=8cos(1912π)+i8sin(1912π)

=8*((sqrt6-sqrt2)/4)-8i(-(sqrt2+sqrt6)/4)=8(624)8i(2+64)

=2(sqrt6-sqrt2)-2i(sqrt6+sqrt2)=2(62)2i(6+2)