Apply Euler's identity
e^(itheta)=costheta+ isin thetaeiθ=cosθ+isinθ
19/12pi=5/4pi+1/3pi1912π=54π+13π
cos(19/12pi)=cos(5/4pi+1/3pi)cos(1912π)=cos(54π+13π)
=cos(5/4pi)cos(1/3pi)-sin(5/4pi)sin(1/3pi)=cos(54π)cos(13π)−sin(54π)sin(13π)
=-1/2*sqrt2/2+sqrt3/2*sqrt2/2=−12⋅√22+√32⋅√22
=(sqrt6-sqrt2)/4=√6−√24
sin(19/12pi)=sin(5/4pi+1/3pi)sin(1912π)=sin(54π+13π)
=sin(5/4pi)cos(1/3pi)+sin(1/3pi)cos(5/4pi)=sin(54π)cos(13π)+sin(13π)cos(54π)
=-sqrt2/2*1/2-sqrt3/2*sqrt2/2=−√22⋅12−√32⋅√22
=-(sqrt2+sqrt6)/4=−√2+√64
Therefore,
8e^(19/12pi)=8cos(19/12pi)+i8sin(19/12pi)8e1912π=8cos(1912π)+i8sin(1912π)
=8*((sqrt6-sqrt2)/4)-8i(-(sqrt2+sqrt6)/4)=8⋅(√6−√24)−8i(−√2+√64)
=2(sqrt6-sqrt2)-2i(sqrt6+sqrt2)=2(√6−√2)−2i(√6+√2)