How can you use trigonometric functions to simplify 8 e^( ( 3 pi)/2 i ) 8e3π2i into a non-exponential complex number?

1 Answer
Apr 16, 2016

-8 i8i

Explanation:

e^(ix) = cos x + i sin xeix=cosx+isinx

So, 8 e^((3pi)/2i)=8(cos((3pi)/2) + i sin ((3pi)/2))8e3π2i=8(cos(3π2)+isin(3π2))
cos((3pi)/2) = 0 and sin ((3pi)/2)=sin(pi+pi/2)=-sin(pi/2)=-1cos(3π2)=0andsin(3π2)=sin(π+π2)=sin(π2)=1

So, 8 e^((3pi)/2i)= -8 i8e3π2i=8i.