How can you use trigonometric functions to simplify 9 e^( ( 11 pi)/6 i ) 9e11π6i into a non-exponential complex number?

1 Answer
Apr 28, 2016

9cos(pi/6)-i9sin(pi/6)9cos(π6)i9sin(π6)

Explanation:

Euler's formula states:

e^{ix}=\cos x+ i \sin xeix=cosx+isinx

Hence,

e^{i(11pi)/6}=cos( (11pi)/6)+ i sin((11pi)/6) = cos(pi/6)-isin(pi/6) ei11π6=cos(11π6)+isin(11π6)=cos(π6)isin(π6)

:.9e^{i(11pi)/6}=9cos(pi/6)-i9sin(pi/6)