How can you use trigonometric functions to simplify 9 e^( ( 17 pi)/12 i ) into a non-exponential complex number?

1 Answer
Jul 26, 2018

The answer is =9/4((-sqrt6+sqrt2)-i(sqrt2+sqrt6))

Explanation:

The Euler's Identity is

e^(itheta)=costheta+isintheta

Therefore,

z=9e^(17/12pii)

=9cos(17/12pi)+isin(17/12pi)

cos(17/12pi)=cos(7/6pi+1/4pi)

=cos(7/6pi)cos(1/4pi)-sin(7/6pi)sin(1/4pi)

=-sqrt3/2*sqrt2/2+1/2*sqrt2/2

=1/4(-sqrt6+sqrt2)

sin(17/12pi)=sin(7/6pi+1/4pi)

=sin(7/6pi)cos(1/4pi)+cos(7/6pi)sin(1/4pi)

=-1/2*sqrt2/2-sqrt3/2*sqrt2/2

=-1/4(sqrt2+sqrt6)

Finally,

z=9/4((-sqrt6+sqrt2)-i(sqrt2+sqrt6))