How do I find all real and complex zeros of x^2-4x+7x24x+7?

1 Answer
Oct 31, 2015

Use the quadratic formula to find zeros occur for:

x = 2+-i sqrt(3)x=2±i3

Explanation:

The quickest way is probably to use the quadratic formula.

x^2-4x+7x24x+7 is in the form ax^2+bx+cax2+bx+c, with a=1a=1, b=-4b=4 and c=7c=7.

So its zeros occur for:

x = (-b+-sqrt(b^2-4ac))/(2a) = (-(-4)+-sqrt((-4)^2-(4xx1xx7)))/(2xx1)x=b±b24ac2a=(4)±(4)2(4×1×7)2×1

=(4+-sqrt(16-28))/2 = (4+-sqrt(-12))/2 = (4+-i sqrt(12))/2=4±16282=4±122=4±i122

=(4+-i*2sqrt(3))/2 = 2+-i sqrt(3)=4±i232=2±i3

Alternatively, you can complete the square as follows:

0 = x^2-4x+7 = x^2-4x+4+3 = (x-2)^2+30=x24x+7=x24x+4+3=(x2)2+3

Subtract 33 from both ends to get:

(x-2)^2 = -3(x2)2=3

So:

x-2 = +-sqrt(-3) = +-i sqrt(3)x2=±3=±i3

Add 22 to both sides to get:

x = 2 +-i sqrt(3)x=2±i3