How do I find all real and complex zeros of #x^2-4x+7#?
1 Answer
Oct 31, 2015
Use the quadratic formula to find zeros occur for:
#x = 2+-i sqrt(3)#
Explanation:
The quickest way is probably to use the quadratic formula.
So its zeros occur for:
#x = (-b+-sqrt(b^2-4ac))/(2a) = (-(-4)+-sqrt((-4)^2-(4xx1xx7)))/(2xx1)#
#=(4+-sqrt(16-28))/2 = (4+-sqrt(-12))/2 = (4+-i sqrt(12))/2#
#=(4+-i*2sqrt(3))/2 = 2+-i sqrt(3)#
Alternatively, you can complete the square as follows:
#0 = x^2-4x+7 = x^2-4x+4+3 = (x-2)^2+3#
Subtract
#(x-2)^2 = -3#
So:
#x-2 = +-sqrt(-3) = +-i sqrt(3)#
Add
#x = 2 +-i sqrt(3)#