How do I find all real and complex zeros of x^2-4x+7x2−4x+7?
1 Answer
Oct 31, 2015
Use the quadratic formula to find zeros occur for:
x = 2+-i sqrt(3)x=2±i√3
Explanation:
The quickest way is probably to use the quadratic formula.
So its zeros occur for:
x = (-b+-sqrt(b^2-4ac))/(2a) = (-(-4)+-sqrt((-4)^2-(4xx1xx7)))/(2xx1)x=−b±√b2−4ac2a=−(−4)±√(−4)2−(4×1×7)2×1
=(4+-sqrt(16-28))/2 = (4+-sqrt(-12))/2 = (4+-i sqrt(12))/2=4±√16−282=4±√−122=4±i√122
=(4+-i*2sqrt(3))/2 = 2+-i sqrt(3)=4±i⋅2√32=2±i√3
Alternatively, you can complete the square as follows:
0 = x^2-4x+7 = x^2-4x+4+3 = (x-2)^2+30=x2−4x+7=x2−4x+4+3=(x−2)2+3
Subtract
(x-2)^2 = -3(x−2)2=−3
So:
x-2 = +-sqrt(-3) = +-i sqrt(3)x−2=±√−3=±i√3
Add
x = 2 +-i sqrt(3)x=2±i√3