How do I find all real and complex zeros of x^5+x+1x5+x+1?
1 Answer
Factor into the product of a quadratic and a cubic, then find the roots of those using the quadratic formula and Cardano's method.
Explanation:
x^5+x+1 = (x^2+x+1)(x^3-x^2+1)x5+x+1=(x2+x+1)(x3−x2+1)
x^2+x+1 = 0x2+x+1=0 has solutionsx = color(blue)((-1+-isqrt(3))/2)x=−1±i√32
To solve
Then
t^3 = (x-1/3)^3 = x^3-x^2+1/3x-1/27t3=(x−13)3=x3−x2+13x−127
-1/3t = -1/3(x-1/3) = -1/3x+1/9−13t=−13(x−13)=−13x+19
So
t^3-1/3t+25/27 = x^3-x^2+1/3x-1/27-1/3x+1/9+25/27t3−13t+2527=x3−x2+13x−127−13x+19+2527
=x^3-x^2+1=x3−x2+1
So our cubic becomes:
t^3-1/3t+25/27 = 0t3−13t+2527=0
Multiply through by
27t^3-9t+25 = 027t3−9t+25=0
Next let
0 = 27(u^3+3u^2v+3uv^2+v^3)-9(u+v)+250=27(u3+3u2v+3uv2+v3)−9(u+v)+25
=27u^3+27v^3+(81uv-9)(u+v)+25=27u3+27v3+(81uv−9)(u+v)+25
Add the constraint that
Then
0 = 27u^3+27(1/9u)^3+25 = 27u^3 + 1/(27u^3)+250=27u3+27(19u)3+25=27u3+127u3+25
Multiply through by
0 = 729(u^3)^2+675(u^3)+10=729(u3)2+675(u3)+1
So:
u^3 = (-675+-sqrt(675^2-4*729))/(2*729)u3=−675±√6752−4⋅7292⋅729
=(-675+-27sqrt(625-4))/(27*54)=−675±27√625−427⋅54
=(-25+-sqrt(621))/54=−25±√62154
=(-25+-sqrt(9*69))/54=−25±√9⋅6954
=(-25+-3sqrt(69))/54=−25±3√6954
Since the derivation was symmetric in
t = root(3)((-25+3sqrt(69))/54) + root(3)((-25-3sqrt(69))/54)t=3√−25+3√6954+3√−25−3√6954
= 1/3root(3)((-25+3sqrt(69))/2) + 1/3root(3)((-25-3sqrt(69))/2)=133√−25+3√692+133√−25−3√692
and
x = t+1/3 = color(blue)(1/3+1/3root(3)((-25+3sqrt(69))/2) + 1/3root(3)((-25-3sqrt(69))/2))x=t+13=13+133√−25+3√692+133√−25−3√692
The Complex roots are found using
x = color(blue)(1/3+omega/3 root(3)((-25+3sqrt(69))/2) + omega^2/3 root(3)((-25-3sqrt(69))/2))x=13+ω33√−25+3√692+ω233√−25−3√692
x = color(blue)(1/3+omega^2/3 root(3)((-25+3sqrt(69))/2) + omega/3 root(3)((-25-3sqrt(69))/2))x=13+ω233√−25+3√692+ω33√−25−3√692
That is
x~~0.87744+0.74486 ix≈0.87744+0.74486i
x~~0.87744-0.74486 ix≈0.87744−0.74486i
Postscript
Note that in general, quintic equations of the form
There is a special kind of radical called a Bring Radical, which represents the principal root of this quintic. That is:
BR(a)BR(a) is the principal root ofx^5+x+a = 0x5+x+a=0
If