How do I find the integral intcos(x)/(sin^2(x)+sin(x))dxcos(x)sin2(x)+sin(x)dx ?

1 Answer
Aug 10, 2014

=ln(sinx/(sin(x)+1))+c=ln(sinxsin(x)+1)+c, where cc is a constant

Full Answer

=intcos(x)/(sin^2(x)+sin(x))dx=cos(x)sin2(x)+sin(x)dx

=intcos(x)/(sin(x)(sin(x)+1))dx=cos(x)sin(x)(sin(x)+1)dx

let's sin(x)=tsin(x)=t, then, cos(x)dx=dtcos(x)dx=dt

=int1/(t(t+1))dt=1t(t+1)dt

Using Partial Fractions,

1/(t(t+1))=A/t+B/(t+1)1t(t+1)=At+Bt+1 .............(i)(i)

multiplying both sides with t(t+1)t(t+1),

1=A(t+1)+Bt1=A(t+1)+Bt

1=A+(A+B)t1=A+(A+B)t

comparing constant and coefficient on both sides, we get

A=1A=1,

A+B=0A+B=0, which implies B=-1B=1

plugging the values of AA and BB in (i)(i),

1/(t(t+1))=1/t-1/(t+1)1t(t+1)=1t1t+1

integrating both sides with respect to tt,

int1/(t(t+1))dt=int1/tdt-int1/(t+1)dt1t(t+1)dt=1tdt1t+1dt

=lnt-ln(t+1)+c=lntln(t+1)+c, where cc is a constant

=ln(t/(t+1))+c=ln(tt+1)+c, where cc is a constant

substituting tt, yields

=ln(sinx/(sin(x)+1))+c=ln(sinxsin(x)+1)+c, where cc is a constant