How do use the first derivative test to determine the local extrema f(x) = x^3 - x^2 - x + 3f(x)=x3x2x+3?

1 Answer
Sep 26, 2015

See the explanation.

Explanation:

f'=3x^2-2x-1
f'=0 <=> 3x^2-2x-1=0
3x^2-3x+x-1=0
3x(x-1)+x-1=0
(x-1)(3x+1)=0
x=1 vv x=-1/3

a=3 >0 function is concave.

graph{3x^2-2x-1 [-10, 10, -5, 5]}

AAx in (-oo,-1/3)uu(1,+oo) f'(x)>0 function is increasing

AAx in (-1/3,1) f'(x)<0 function is decreasing

f'(x) changes sign in x=-1/3 and f(x) has a maximim value f_max=f(-1/3)=86/27

f'(x) changes sign in x=1 and f(x) has a minimum value f_min=f(1)=2