How do use the first derivative test to determine the local extrema f(x) = x / (x^2+1)f(x)=xx2+1?

1 Answer
Sep 29, 2015

See the explanation.

Explanation:

f'(x)=(x^2+1-2x^2)/(x^2+1)^2=(1-x^2)/(x^2+1)^2

f'(x)=0 <=> 1-x^2=0 <=> x=1 vv x=-1

f'(x)>0 AAx in (-1,1) function increasing
f'(x)<0 AAx in (-oo,-1)uu(1,oo) function decreasing

f'(x) changes sign at x=-1 and f(x) has a minimum value f_min=f(-1)=-1/2

f'(x) changes sign at x=1 and f(x) has a maximum value f_max=f(1)=1/2