How do you add (15i)+(2+i) in trigonometric form?

1 Answer

17[cos(tan1(41))+isin(tan1(41))]
17[cos(4.4674103172578)+isin(4.4674103172578)] Radian

17[cos(255.96375653207)+isin(255.96375653207)]

Explanation:

First we add the complex numbers
(15i)+(2+i)=

=(12)+(5i+i)

=14i

Convert to trigonometric form

for complex number a+ib

a+ib=a2+b2[cos(tan1(ba))+isin(tan1(ba))]

so we let a=1 and b=4

14i=
(1)2+(4)2[cos(tan1(41))+isin(tan1(41))]

In the complex rectangular coordinate system, this is located at the 3rd quadrant

17[cos(tan1(41))+isin(tan1(41))]
17[cos(4.4674103172578)+isin(4.4674103172578)] Radian

17[cos(255.96375653207)+isin(255.96375653207)]

have a nice day !