How do you add (1+7i)+(42i) in trigonometric form?

1 Answer
Jun 25, 2018

3+5i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2
θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=12+72)=50
r2=42±22=20

θ1=tan1(71)81.87, I quadrant
θ2=tan1(24)206.57, III quadrant

z1+z2=50cos(81.87)+20cos(206.57)+i(50sin(81.87)+20sin(206.57))

14+i(72)
3+5i

Proof:

1+7i42i

3+5i