z=a+bi=r(cosθ+isinθ)
r=√a2+b2, θ=tan−1(ba)
r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))
r1=√−12±82)=√65
r2=√−12±22=√5
θ1=tan−1(−8−1)≈262.87∘, III quadrant
θ2=tan−1(−2−1)≈243.43∘, III quadrant
z1+z2=√65cos(262.87)+√5cos(243.43)+i(√65sin(262.87)+√5sin(243.43))
⇒−1−1+i(−8−2)
⇒−2−10i