How do you add (18i)+(12i) in trigonometric form?

1 Answer
Jun 25, 2018

210i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=12±82)=65
r2=12±22=5

θ1=tan1(81)262.87, III quadrant
θ2=tan1(21)243.43, III quadrant

z1+z2=65cos(262.87)+5cos(243.43)+i(65sin(262.87)+5sin(243.43))

11+i(82)

210i