How do you add (1+8i)+(42i) in trigonometric form?

1 Answer
Jun 25, 2018

3+6i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=12+82)=65
r2=22+42=20

θ1=tan1(81)97.13, II quadrant
θ2=tan1(24)333.43, IV quadrant

z1+z2=65cos(97.13)+20cos(333.43)+i(65sin97.13+20sin333.43)

1+4+i(82)

3+6i