z=a+bi=r(cosθ+isinθ)
r=√a2+b2, θ=tan−1(ba)
r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))
r1=√−12+82)=√65
r2=√−22+42=√20
θ1=tan−1(8−1)≈97.13∘, II quadrant
θ2=tan−1(−24)≈333.43∘, IV quadrant
z1+z2=√65cos(97.13)+√20cos(333.43)+i(√65sin97.13+√20sin333.43)
⇒−1+4+i(8−2)
⇒3+6i