How do you add (2-5i) and (-2-2i) in trigonometric form?

1 Answer
Jul 9, 2018

color(red)(=> - 7i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(2^2+ -5^2))=sqrt 29
r_2=sqrt(-2^2+ -2^2) =sqrt 8

theta_1=tan^-1(-5 / 2)~~ 291.8^@, " IV quadrant"
theta_2=tan^-1(-2/ -2)~~ 225^@, " III quadrant"

z_1 + z_2 = sqrt 29 cos(291.8) + sqrt 8 cos(225) + i (sqrt 29 sin 291.8 + sqrt 8 sin 225)

=> 2 - 2 + i (-5 - 2 )

color(red)(=> - 7i