How do you add (2+8i)+(3+4i)(2+8i)+(3+4i) in trigonometric form?

1 Answer
May 18, 2016

(2+8i)+(3+4i)=sqrt68[cosalpha+isinalpha]+5[cosbeta+issinbeta](2+8i)+(3+4i)=68[cosα+isinα]+5[cosβ+issinβ],

where alpha=arctan4α=arctan4 and beta=arctan(4/3)β=arctan(43).

Explanation:

Let us first write (2+8i)(2+8i) and (3+4i)(3+4i) in trigonometric form.

a+iba+ib can be written in trigonometric form rcosthetaa+irsintheta=r(costhetaa+isintheta)rcosθa+irsinθ=r(cosθa+isinθ),
where r=sqrt(a^2+b^2)r=a2+b2 and tantheta=b/atanθ=ba or theta=arctan(b/a)θ=arctan(ba)

Hence (2+8i)=sqrt(2^2+8^2)[cosalpha+isinalpha](2+8i)=22+82[cosα+isinα] or

sqrt68[cosalpha+isinalpha]68[cosα+isinα], where alpha=arctan4α=arctan4 and

(3+4i)=sqrt(3^2+4^2)[cosbeta+isinbeta](3+4i)=32+42[cosβ+isinβ] or

5[cosbeta+issinbeta]5[cosβ+issinβ], where beta=arctan(4/3)β=arctan(43)

Hence (2+8i)+(3+4i)(2+8i)+(3+4i) =

sqrt68[cosalpha+isinalpha]+5[cosbeta+issinbeta]68[cosα+isinα]+5[cosβ+issinβ],

where alpha=arctan4α=arctan4 and beta=arctan(4/3)β=arctan(43).