How do you add (2+9i)+(5-7i)(2+9i)+(57i) in trigonometric form?

2 Answers
May 21, 2018

(2+9i)+(5-7i)=sqrt53(cos(0.279)-sin(0.279)i)(2+9i)+(57i)=53(cos(0.279)sin(0.279)i)

Explanation:

We add two complex numbers a+bia+bi and c+dic+di as follows:

(a+bi)+(c+di):=(a+c)+(b+d)i

So (2+9i)+(5-7i)=7-2i. Now, to convert to trigonometric, we use the following identity:

(a+bi)=r(cos(theta)+sin(theta)i)

where r=sqrt(a^2+b^2) and theta satisifies costheta=a/r,sintheta=b/r

So, for 7-2i, r =sqrt(49+4)=sqrt53 and costheta=7"/"sqrt53,sintheta=-2"/"sqrt53 and so theta=arctan(-2"/"7)approx-0.279

Finally, 7-2i=sqrt53(cos(-0.279)+sin(-0.279)i)=sqrt53(cos(0.279)-sin(0.279)i)

Jul 9, 2018

color(violet)(=> 7 + 2 i

Explanation:

z= a+bi= r (costheta+isintheta)

r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)

r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))

r_1=sqrt(2^2+ 9^2))=sqrt 85
r_2=sqrt(5^2+ -7^2) =sqrt 74

theta_1=tan^-1(9 / 2)~~ 77.47^@, " I quadrant"
theta_2=tan^-1(-7/ 5)~~ 305.54^@, " IV quadrant"

z_1 + z_2 = sqrt 85 cos(77.47) + sqrt 74 cos(305.54) + i (sqrt 85 sin 77.47 + sqrt 74 sin 305.54)

=> 2 + 5 + i (9 - 7 )

color(violet)(=> 7 + 2 i