How do you add (6+i)+(9+3i) in trigonometric form?

1 Answer
Aug 6, 2018

(6+i)+(9+3i)=3+4i, I Quadrant

Explanation:

(6+i)+(9+3i)

z=x+iy

z=r(cosθ+isinθ)

r=|z|=x2+y2

r1=62+12=37

θ1=arctan(yx)=tan1(16)=170.5377, II Quadrant

r2=92+32=90

θ2=arctan(yx)=tan1(39)=18.4349, I Quadrant

(6+i)+(9+3i)=37(cos170.5377+sin170.5377)+90(cos18.4349+sin18.4349)

37cos170.5377+90cos18.4349+i(37sin170.5377+90sin18.4349)

6+9+1i+3i

(6+i)+(9+3i)=3+4i, I Quadrant