How do you add (7+4i) and (2+6i) in trigonometric form?

1 Answer
Jan 29, 2018

9+10i

Explanation:

If we have a complex number such that z=a+bi, then z=r(cosθ+isinθ), where:

  • r=a2+b2
  • θ=tan1(ba)

For z1=7+4i :
r=72+42=49+16=65
θ=tan1(47)29.7
=65(cos(29.7)+isin(29.7))

For z2=2+6i :
r=22+62=4+36=40
θ=tan1(62)71.6
=40(cos(71.6)+isin(71.6))

For z1+z2 :
z1+z2=65cos(29.7)+i65sin(29.7)+40cos(71.6)+i40sin(71.6)

z1+z2=65cos(29.7)+40cos(71.6)+i(65sin(29.7)+40sin(71.6))

z1+z2=8.999470954+9.995734316i#

z1+z29+10i

Proof:
7+4i+2+6i=(7+2)+i(4+6)=9+10i