How do you add (7+5i)+(24i) in trigonometric form?

1 Answer
Jun 13, 2018

74cos(0.6202)+20cos(5.1760)+i(74sin(0.6202)+20sin(5.1760))
9+i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2
θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=72+52=49+25=74
r2=22+42=4+16=20

θ1=tan1(57)0.6202c
θ2=tan1(2)1.1071c

However, as 24i is in quadrant 4, we need to add 2π to get a positive angle variant.

θ2=2π+tan1(2)5.1760c

74cos(0.6202)+20cos(5.1760)+i(74sin(0.6202)+20sin(5.1760))
7+2+i(54)
9+i

Proof:

7+5i+24
(7+2)+i(54)
9+i