How do you add (75i) and (2+2i) in trigonometric form?

1 Answer
May 31, 2017

z=9.49(cos(18.43)+isin(18.43)) or simply (9.49,18.43)

Explanation:

Strategy. First add them up, while they are still in rectangular form. Then convert the single term rectangular number into trigonometric form. Choose degrees or radians for the angle. I choose degrees.

Step 1. Add the two rectangular complex numbers. The result will be in standard rectangular form a+bi or (a,b)

(75i)+(2+2i)=(725i+2i)=93i

Here, a=9 and b=3

Step 2. Given the conversion formulas, translate to trig form, which is of the form z=r(cos(θ)+isin(θ)) or in polar form (r,θ)

θ=tan1(ba)=tan1(39)=tan1(13)18.43

r=a2+b2=(9)2+(3)2=909.49

z=9.49(cos(18.43)+isin(18.43)) or simply (9.49,18.43)