How do you add (7+9i) and (1+6i) in trigonometric form?

1 Answer
Jul 9, 2018

8+15i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=72+92)=130
r2=12+62=37

θ1=tan1(97)127.87, II quadrant
θ2=tan1(61)333.43, II quadrant

z1+z2=130cos(127.87)+37cos(99.46)+i(130sin127.87+37sin99.46)

71+i(9+6)

8+15i