z=a+bi=r(cosθ+isinθ)
r=√a2+b2, θ=tan−1(ba)
r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))
r1=√−72+92)=√130
r2=√−12+62=√37
θ1=tan−1(9−7)≈127.87∘, II quadrant
θ2=tan−1(6−1)≈333.43∘, II quadrant
z1+z2=√130cos(127.87)+√37cos(99.46)+i(√130sin127.87+√37sin99.46)
⇒−7−1+i(9+6)
⇒−8+15i