How do you add (8+4i) and (33i) in trigonometric form?

1 Answer
Jun 25, 2018

11+i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=42+82)=80
r2=32+32=18

θ1=tan1(48)26.57, I quadrant
θ2=tan1(33)315, IV quadrant

z1+z2=80cos(26.57)+18cos(315)+i(80sin26.57+18sin315)

8+3+i(43)

11+i