How do you add (9+2i)+(2+4i) in trigonometric form?

1 Answer
Jul 27, 2018

7+6i, II Quadrant

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=92+22)=85
r2=22+42=20

θ1=tan1(29)167.4712, II quadrant
θ2=tan1(42)63.4349, I quadrant

z1+z2=85cos(167.4712)+20cos(63.4349)+i(85sin167.4712+20sin63.4349)

9+2+i(2+4)

7+6i, II Quadrant