How do you add (97i)+(1+i) in trigonometric form?

1 Answer
Jul 9, 2018

106i

Explanation:

z=a+bi=r(cosθ+isinθ)

r=a2+b2, θ=tan1(ba)

r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))

r1=92+72)=130
r2=12+12=2

θ1=tan1(79)322.13, IV quadrant
θ2=tan1(11)45, I quadrant

z1+z2=130cos(322.13)+2cos(45)+i(130sin322.13+2sin45)

9+1+i(7+1)

106i