z=a+bi=r(cosθ+isinθ)
r=√a2+b2, θ=tan−1(ba)
r1(cos(θ1)+isin(θ2))+r2(cos(θ2)+isin(θ2))=r1cos(θ1)+r2cos(θ2)+i(r1sin(θ1)+r2sin(θ2))
r1=√92+−72)=√130
r2=√12+12=√2
θ1=tan−1(−79)≈322.13∘, IV quadrant
θ2=tan−1(11)≈45∘, I quadrant
z1+z2=√130cos(322.13)+√2cos(45)+i(√130sin322.13+√2sin45)
⇒9+1+i(−7+1)
⇒10−6i