How do you calculate (1+i)/(1-i)1+i1i?

1 Answer
Jan 5, 2018

ii

Explanation:

We can compute this by multiplying both numerator and denominator by the conjugate, 1+i1+i, of the denominator.

((1+i)/(1-i))*((1+i)/(1+i)) = (1+2i+i^2)/(1-i^2)(1+i1i)(1+i1+i)=1+2i+i21i2

We know that i^2=-1i2=1, so:

(1+2i+i^2)/(1-i^2) = (1+2i-1)/(1-(-1)) =(2i)/2=i1+2i+i21i2=1+2i11(1)=2i2=i.