How do you calculate (3(cos14^circ+isin14^circ))/(2(cos121^circ+isin121^circ)3(cos14+isin14)2(cos121+isin121)?

1 Answer
Mar 22, 2017

(3(cos14^@+isin14^@))/(2(cos121^@+isin121^@))=3/2(cos107^@-isin107^@)3(cos14+isin14)2(cos121+isin121)=32(cos107isin107)

Explanation:

(3(cos14^@+isin14^@))/(2(cos121^@+isin121^@)3(cos14+isin14)2(cos121+isin121)

= 3/2xx((cos14^@+isin14^@))/((cos121^@+isin121^@))xx((cos121^@-isin121^@))/((cos121^@-isin121^@)32×(cos14+isin14)(cos121+isin121)×(cos121isin121)(cos121isin121)

= 3/2(cos14^@cos121^@-i^2sin14^@sin121^@-icos14^@sin121^@+isin14^@cos121^@)/(cos^2 121^@-i^2sin121^@)32cos14cos121i2sin14sin121icos14sin121+isin14cos121cos2121i2sin121

= 3/2(cos14^@cos121^@+sin14^@sin121^@+i(sin14^@cos121^@-cos14^@sin121^@))/(cos^2 121^@+sin121^@)32cos14cos121+sin14sin121+i(sin14cos121cos14sin121)cos2121+sin121

= 3/2(cos(14^@-121^@)+isin(14^@-121^@))/132cos(14121)+isin(14121)1

= 3/2(cos(-107^@)+isin(-107^@))32(cos(107)+isin(107))

= 3/2(cos107^@-isin107^@)32(cos107isin107)